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ABSTRACT
The formation of spatially patterned structures in biological

organisms has been modelled in recent years by various mechanisms,
including pairs.of reaction-diffusion equations
2
M= Dlv u + f(u,v) ,
v = B Vzv +g(u,v)
Bl e Wl

Their analysis has been by computer simulation. In some cases, u can
be interpreted as an activator and v an inhibitor. The following problem

is treated: given a '"pattern' u = ¢(xX) v = |(x), find a system which

has it as a stable stationary solution (stability is used in various senses

in the paper). This inverse problem is shown to have solutions for reason-

able ¢ and . The solutions constructed are of activator-inhibitor type

e
with D, >D, . LS T
23 3
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ON MODELLING PATTERN FORMATION
BY ACTIVATOR-INHIBITOR SYSTEMS

Paul C, Fife

1. Introduction.

The formation of spatially patterned structures in biological organ-
isms has been modelled by various mechanisms in recent years, (see,
for example, the survey by Cooke [2] for a description of recent work in
the area). Among these modelling attempts have been those using only the
processes of chemical reaction and the diffusion of the reacting species.
The most common approach to this problem has been that of small-amplitude
(linear or nonlinear) analysis of the onset of symmetry-breaking instabilities.
I shall not attempt to survey results using this approach, except to say
that they were begun by the well -known work of Turing, and include, among
others, the work of Gmitro, Othmer, and Scriven, Prigogine, Lefever, and
Nicolis, and Segal, Jackson, and Levin. We are concerned here with models
vielding large-amplitude patterns. Notable in this regard is the work of
Gierer and Meinhardt [6,7,9,10] in Tubingen, and Babloyantz, Hiernaux,
Herschkowitz-Kaufman, Nicolis, Prigogine, and others in Brussels [1,8].
See also [4] for models of sharply differentiated structures. These models
are generally of the form
(la) u =) Vzu + flu,v) 4

t 1

(1b) vt = DZ Vzv + g(u,v),
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where u and v are the concentrations of two hypothetical reacting
substances, and the source terms f and g are derived from assumed
reaction schemes. The analysis of these equations has been by computer
simulation (except in [4]). The results have indeed indicated the appear-
ance of spatial patterns of various sorts.

The important problem here is, given a stationary spatial pattern of
some general description, to find a system of reaction-diffusion equations
which will yield that pattern as a stable solution. In addition, one wants
to be able to interpret the reaction terms on the basis of some reasonable
reaction kinetics. It is this first inverse problem (given a solution, find
the equations) that we are concerned about in the present paper. We re-
strict attention to two-component systems of the form (1) with one space
variable x (see §4 for extensions to higher dimensions), and show that
for any reasonable given time-independent function u = ¢(x), there are
systems of this type which have a stable stationary solution with u = ¢.
Within certain limitations, the function v = y(x) can also be prescribed.
Systems having the given functions as solution are easy to construct, but
stability is an elusive property, and the difficult part is finding systems
for which the given solution is stable. For example, the corresponding
inverse problem for a scalar equation, ut = uxx + f(u), the pattern being
defined for all x, does not have a solution unless the required
pattern is monotone; and even then it is structurally unstable,

as small changes in f will destroy the pattern [5].
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We leave aside the second important task mentioned above, namely
the interpretation of f and g on the basis of some reasonable reaction
kinetics. The systems we construct have no obvious interpretation in
those terms, and for this reascn are not likely to be of practical impor-
tance as models, At the same time, in constructi‘ng model reaction-diffu-
sion systems with only two components, one should not attach overriding
importance to having them mirror specific reaction networks involving the
two species alone. In fact, the actual mechanism modelled will involve
a large number of reacting species '(and other entirely different processes
as well). One usually justifies the reduction to two species <1 the basis
that various pseudo-steady-state, slow reaction, or other approximations
can often be made to effect such a reduction. But when these approxima-
tions are introduced, the connection between the source terms f and g
and the actual kinetics is necessarily obscured; in particular, f and g
do not conform to mass-action kinetics between the two hypothetical
species,

The only thing we require of f and g is that they be of activator-
inhibitor type, which we define as follows:

Definition: wu is an activator for (1) if fu >0, 9, >0,

v is an inhibitor for (1) if fv <o, g, < 0.
Thus increasing the amount of u present enhances the production of u
and v , whereas increasing v has the opposite effect. This requirement

was occasioned by the fact that Gierer and Meinhardt's models are of




activator-inhibitor type, with the inhibitor diffusing more rapidly than the
activator. This latter fact is also true in our scheme, and is necessary
to produce stability of the pattern. In fact, one major point of the present
paper is an elucidation of how activator-inhibitor mechanisms with differ-
ent diffusivities may enhance stability.

Up to this point, we have not spoken of boundary conditions which
one must impose if (1) is to be solved in a bounded domain in space. They
are of little importance in our argument, which is valid for any reasonable
boundary conditions, and even for problems on the whole line with no
boundary.

The concept of stability we use for most of the results is linearized
stability, wherein one examines the spectrum of the operator S obtained
by linearizing the right hand side of (1) about the stationary solution (¢,{).
If the spectrum Z(S) has points A with Re A\ >0, then (¢,y) is un-
stable, whereas if all points have Re \ <0, it is stable. Marginal sta-
bility is when Z(S) has a point with Re A = 0, but none with Re \ > 0,
From linear stability, one can often deduce stability in a stricter (such as
Co) sense; in particular, that can be done with our examples of patterns
on a finite interval, and for our '"'single-peak'' pattern on the whole real
line. For any pattern on the whole line, 0 is always in Z(S), so the
most we can hope for in the general case is marginal stability, which is
what we in fact obtain. In the case of ''single peak'' distributions on the

whole line, however, fo: which ¢ is even and monotone for x >0 , it
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turns out that 0 will be an isolated point of Z(S), and we apply a theorem

of Sattinger [11] to obtain the result that the stationary solution is stable in

the C0 sense. I believe that our résults are among the first in which

stability is proved for solutions of systems with two or more components,

on the entire real line, or of large amplitude patterns on a finite interval,
Some of the results in this paper were announced in [5].

2. The inverse problem on a finite interval.

We consider systems of the form

(2a) u

t Yo * f(u,v),

(2b) v

¢ k vxx + g(u,v)
for functions u,v defined for xe¢ [a,b], t >0. We also prescribe bound-
ary conditions at the endpoints a and b , and for definiteness take them
to be of no-flux type:
(3) ux(a,t) = ux(b,t) = vx(a,t) = vx(b,t) =R0

For a given stationary solution u = ¢(x), v = y(x) of (2), (3), we
denote by S the operator obtained by linearizing the right side of (2)

about (¢, y).

Uy + (e bu + £ (g, 0)v

kv .+ gueu + g (e,4)V
7 I R 1, 0
The operator S is to be considered as actingon (C ') = C [a,b]X C [a,b],
with domain the C2 functions satisfying (3). We denote its spectrum by Z(S).
The patterns ¢(s) which we consider will be in Cz[a,b], and
will have the property that ¢' 1is a function only of ¢ . This

L 4
latter means that ¢ is even with respect to any local maximum or
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minimum, so that its graph (see Figure l) is symmetric with respect to
vertical lines through such maxima and minima. To be more precise, the
statement is that ¢ can be extended to be defined for all x , and the

extended graph has those symmetry properties.

g

— - -

Figure 1. Example of a pattern ¢(x) with two vertical axes of
symmetry (dotted lines).

Theorem 1: Lc;t ¢ be a function in Cz[a,b], satisfying ¢'(a) = ¢'(b) = 0,
and ¢"(x) = F(¢ (x)) for some C2 function F . Let ¢ satisfy
(4) ¢ o8t O, c1>o.
Let k>1.

Then there exist functions f(u,v), g(u,v), satisfying fu >0,
9, >0, fv <o, g, <0, such that (¢,y) is a stable or marginally stable
stationary solution of (2), (3). Furthermore Z(S) is discrete and is located
entirely in the half-plane {Re A <0} except possibly for a simple eigenvalue

at the origin.
oy -




Proof: First consider the case ¢ =y, soO cl = c‘2 =0 . For some

constant o to be determined later, let

(5a) f(u,v) = =F(u) + o(u-v)

(5b) g(u,v) = -k F(v) + ko(u-v) .

If ¢ is chosen large enough, these will be the required functions. First of

all, it is clear that (u,v) = (¢,¢) satisfies (2), (3). We must show it is
2
a stable or marginally stable solution. Let L = 9_2 - F'(¢(x)), an
dx

operator on Co[a,b] with domain $8(L) consisting of C2 functions
satisfying (3). Then

+ o(u-v)

c

z L
S(G)=

<

kL v + ko(u-v)

Let ¢ =1/k , and let P(\,n) be the polynomial
P(\,p) = ¢ )\2 + A[(l-g)o - (1+e)pu] + p.z
Then P(A,L) is a fourth order operator with domain functions h e 8(L)
such that Lh ¢ §(L); furthermore Z(P(\,L)) = P(\,Z(L)) [3, p. 604]. Let
A= (AN Z(P(\,L))30} = {\ :P(\,p) =0 for some pe Z(L)}.

Proposition 1: Z(S) C A .

Proof: Let \p A. Then 0 is in the resolvent set of P(\,L), and

P()\,L)-1 is a bounded operator on Co[a,b]. Consider the problem

(6) (8 -2D[3] = [,

with p,qe Co[a,b]. It can be solved explicitly by the formula

(7a) W llere ex)P(x,L)'lp + eo P(x,L)'lq 4

<
1]

(7b) -0 P()«,L)-lp + e(L + o-N\)P( ).,L)-lq ‘

P




It is verified directly, using the fact that P()\,L)-l commutes with L on
R(L), that this formula defines a two-sided bounded inverse (S-)\)-l. There-
fore N is in the resolvent set of S ., This establishes the proposition.

Proposition 2: A is a discrete set in the half-plane {Re\ <0}. Further-

more A C {Re\ <0} unless 0e¢ (L), in whichcase A ={0}UT,

with T C {Reh <0},

Proof: The discreteness follows from the discreteness of =(L). We know
that Z(L) is real and bounded from above. Let ¢ be so large that
(1-g)o - (1+e)Z(L) > 0. Then if pe Z(L) and u # 0, the coefficient of \
in the polynomial P(A,u) will be positive, so that the sum of the two roots
xl,xz of P(\,n) = 0 will be negative. If they are complex conjugates,
their common real part must be negative, If they are real, then )‘1)‘2 =

p.z > 0, so that they must both be negative. In any case, Re A <0 for any
root of P,

On the other hand if p = 0¢ Z(L), then P(\,0) has one negative
and one 0 root. This proves the proposition.

We now observe that fu >0, etc., for large enough ¢ . To com-
plete the proof of Theorem 1, we need only show that when 0 is an eigen-
value of S, it 's simple. From Proposition 2, we know this happens only
when 0 is an eigenvalue of L. Under boundary conditions (3), L has
only algebraically simple eigenvalues so there is a unique (up to a scalar

factor) nullvector 6 . Let (xl,xz) be any nullvector of S, so that

Lxl + U(XI-XZ) =0,

sz + u'(xl-xz) 0.

-8-




Subtracting, we see that L(\l-x)) = 0 , which implies that XI-XZ = ao for

some scalar a. Hence Lx1 + oab = 0. But since 0 is an algebraically
simple eigenvalue of L, this implies a = 0 and Xy = b6, Hence
(XI'XZ) = b(6,0), and S has only one nullvector. A similar argument shows
that its algebraic multiplicity is also 1. This completes the proof of the
theorem in the case ¢ = .

Now if ¢ # {, but is given by (4), we first write the system (2)
with f and g given by (5), and the symbol v replaced by w. Then we

effect a change of variable w = clv + c to obtain the desired system in

2
u and v . This completes the proof.
Remarks: 1. If, instead of (4), ¢ and ¢ are related nonlinearly by

¢ = h(u)
with h'(y) > 0, then we still obtain a type of nonlinear diffusion system for

u and v. The difference is that now (2b) is replaced by

(h'(v)vx)

hi(v) + g(u,v) .

vi = k
This is obtained by the procedure discussed in the preceding paragrapt,
except that the change of variable is now w = h(v).
2. The specific form of the boundary conditions (3) was not used:
only the fact that Z(L) is bounded from above, discrete, and contains 0 ,
if at all, only as a simple eigenvalue, If this last condition is not fulfilled,
then all assertions of the theorem remain true except the final one regarding

the simplicity of the eigenvalue at the origin. We may therefore replace (3)

by any other bourfdary conditions for which the above requirements are met,

“9.




In particular, periodic boundary conditions could be used. In this case, 0
1s always an eigenvalue of L, because L¢' =0, If L has constant
coefficients, it would of course be double, because L¢'' = 0 as well. But
in general, one expects it to be simple,

3. The solution of the inverse problem is certainly not unique; for
example, o can be any large enough positive constant., More generally,
in place of (5), we may use functions
(8a)  fu,v) = -F(u) + o(u-v} + (u-v)> Hu,v)

(8b)  g(u,v) = -kF(v) + kT(u-v) + (u-v)z g(u,v),

where f and 5 are arbitrary, ¢ and T are such that there are no points

of Z(L) in [T-0,0)(if ¢ >T) orin (0,7-0] (if ¢ <t), and T >¢e o0 + (1+e)M,

where M = Max(Z(L)). With such a pair f,g, the proof of Theorem | goes

through with only obvious modifications.

3. Patterns on the entire line.

The restriction to a finite interval in the previous section is un-
necessary. Let ¢ be a bounded nonconstant function, defined for all x 5
such that ¢'" = F(¢) for some C2 function F . Then ¢ will be periodic,
peaked or monotone. Here ''peaked'' means that it has a single maximum or
minimum, and approaches a limit as |x|- o ,

Theorem 2. Let ¢ be as described, and let | satisfy
¢=cl¢+c2, cl>0.

Let k >1. Then the conclusions of Theorem 1 hold, except that Z(S) is

no longer discrete, and in the periodic case, the eigenvalue at the origin

510«




is not necessarily simple. In all cases, 0 ¢ Z(S). In the peaked case, let

= 1im o(x)., If F‘(¢0) >0, then 0 is an isolated point of Z(S) and
x|
(¢, &) is staltle in the uniform norm. In the monotone case, let Py =

%0

lim ¢{x) and ) = lime(x). If F'((pi) >0, ie=0,1 ‘then (@,4) is
X~ =00 X — 00
again stable in the uniform norm.
Proof: The proof of Theorem 1 holds without change, with the same
functions (5), except that A will no longer be discrete, because Z(L)
is no longer discrete. In the peaked case with F’(<p0) >0 , we know that
the points of Z(L) greater than -F"((po) are isolated. This follows from
[3, p. 1448] and the easily proved fact that any bounded solution of
(L-\)u = 0 for \ > -F'(<p0) must decay exponentially, so is in sz(g):
hence discrete points of L in this range are eigenvalues of L as an
operator in sZ(B). See also [12]. On the other hand, 0 is always an
eigenvalue of L, since L¢' = 0, and it is simple and has a finite number
of nodes. So although A is no longer discrete, it still lies in the left half-
plane except for an isolated point at the origin. The same is therefore true
of 2(S). The proof that 0 is a simple eigenvalue of Z(S) proceeds as
before.

To prove that (¢,y) is stable in the CO sense, we shall use
Sattinger's stability theorem [l1]. To verify that theorem's hypotheses,
it suffices to show that Z(S) lies on the negative real axis, and that the

resolvent (S-)\)-l satisfies the following estimates for |arg \| < 7-6 <

and l>\| large enough. (In the following, the symbol K will denote

=1l
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several different constants.)

-1 K
(9a) ls-M) w5, < 7 v ’
(CO)L RN (CO)Z
(9b) -] iy & ﬁ-ﬂ-l\hu 0.2
(C) (C)

It may be verified directly from the definition of A, and the fact
that Z(L) is real, that A, hence Z(S), is real for o(l-¢) large enough.
Therefore 2(S) certainly lies in the required sector.

We now turn to the verification of (9). First, we note that esti-
mates of that form were obtained in [12] for the operator L instead of S,
provided F'(¢(x)) approaches its limit exponentially fast as |x|-®. But
F(q:o) =0 F'((po) >0, and ¢ satisfies ¢'" - F(¢) =0, so <p(x)—><p0
exponentially as |x| - ©, Therefore F'(¢(x))—~ F'((po) exponentially as
well .

We may factor P(\,L) as follows:

P(X,L) = (L-pl)(L-MZ), M= $[AM1+e) % [)\2(1-8)2-40'(1-6)\]%]-

It is seen that for large |\]|, Ip.il are also large and for some K,
(10) KN <l < KIN
By (9) and the above mentioned estimate for (L—X)-l, we have the following,
for large enough |[\| in the sector |arg \| < m - 6:
K

=}
(11) [ (L-p) "hl < bl
R ONR £ L e

If (L-ﬁ)w = h, we have w'" =h - piw + F'(p(x))w , so from (11) ,




Now

a1 -} -1
IPOSL R, = [l(Lep) (L-w,) "h] , <
£ C
ol K
< K[[(L-p,) h|| 4 < el 4 s
& TP RN 0
and so
<3 e
ILPO,L TR < KPP L) | 5 % R}%Hh!l 0
s c €

These estimates, applied to the explicit representation (7) of (S-)\)-l,

yield

—

“l' . p AW
(12) ”(S')‘) ( q)H 02 s |)\| "

p
c? q)" 0.2

(C)

- ==
2), we may again represent u'' and v'

If (S-\)( 3) = in terms of

u, v, p, and q, and so obtain

-1 p p
18-%3"" ¢ 21 < K[COHl
g ettt T (¢

Interpolating between this estimate and (12), we finally obtain

0,2

. |
1(S-\) (g)ll < = (P

chz = N7 Ta'l o

This establishes the Co-stability of peaked distributions.

0)2

For monotone distributions, XZ(L) is discrete above Max[-F'(<p0),
-F'(:pl)] < 0 . The rest of the argument is the same. This completes the
proof of Theorem 2.

Example: Possibly the simplest illustration of single-peak modelling

would be for the pattern
6 ex/ d

e(x) = T“gaT = Y(x)

e )

which represents a peak with maximum of 3/2 at x = 0, ¢(w0) =0, and

-13-




an approximate width d , which is arbitrary. Since ¢' + d_z(q)zo(p) =0,

the model reaction-diffusion equations can be taken to be

P
U= = H + 4 °
t XX

kv 4+ kd~
XX

u + (o‘-d-z)u -ov,

ot . (o'+kd_2)v + ou .

o
Remark: In the peaked case, there is another stationary solution of (2)
with (5) besides u=v =¢ (x), namely the constant solution u =v = ¢ -
It is also stable, as the above analysis, together with the fact that
F'((po) > 0, shows. This suggests there may be a third stationary solution
which is unstable. In fact, the function F(¢) must take on positive and
negative values for ¢# 99’ so there must be another zero of F-, say ?) s
for which F’(<p1) <0, Then u=v = ¢ is a solution. If S is the lineariza-
tion about this solution, the above analysis sr;ows its spectrum to be con-
tinuous and to extend up to the origin. Very possibly this third solution,

though marginally stable in the linearized sense, will turn out to be unstable

in the C0 sense.

4., Discussion :

1. Many of the results extend to analogous problems in more than one
dimension. For this extension, one replaces U and Yoo in (2) by Vzu
and Vzv respectively, and considers patterns ¢ for which Vzw = F(g).
Single radially symmetric peaks, for example, have this property, and it is
likely that lattices of peaks can also be constructed with it, Then X(S)
again lies on the negative real axis, However, the eigenvalue 0 is no

longer necessarily simple.

-14-



2. It is clear that the stability proofs given in the preceding two
sections depend on

(i) large enough activation by u and inhibition by v , and

(ii) the diffusivity (k) of v being larger than that (1) of u .
At the same time, it is clear from Remark 3 at the end of §2 that the param-
eters o and T cannot be completely independent for the stability proof
to go through, We interpret this by saying that the u-activation and the
v-activation cannot be completely independent.

In our constructed models, there is also a relation between the
magnitudes of the activation and the inhibition, and this relation depends
on the relative amplitudes of the required distributions ¢ and . For
simplicity, let us take Gy = 0 in (4); then this relative amplitude will be
cl. For cl not necessarily 1, the equations corresponding to (8) will be

f(u,v) = -F(u) + a(u-clv) + (u-clv)Z f

k kTt 2 ~
g(u,v) = - e F(clv) + E—(u-c v) + (u-clv) J .

1 1

It may be instructive to express all the relations mentioned above

1

directly in terms of some reasonable activation and inhibition parameters.

Accordingly, we define the

u~activation = Au = average value of fu(¢,¢) ~ o (for o large),

m

v-activation = A

y = average value of gu( o)~ kc—'r(for T large),

1

u-inhibition =1 ~ c,o
u 1

v-inhibition = IV ~ kT .

=15«



For our models, then, the following relations exist between the

parameters A , A , 1 , 1 , ¢ and k :
u v u v

l’

AALLT >>1,

(13) I ~¢e R

All of these are clear from the preceding except possibly the last. It follows
from the fact that although ¢ and 7 were required to be large, their differ-
ence had to be small enough. So we can write ¢ ~ 7T .

This is no demonstration that the relations (13) are always necessary
to produce stable patterns; nevertheless it seems reasonable to use them as
one possible guide in constructing other models, not of the form given in

the present paper.

References
1. A. Babloyantz and J. Hiernaux, Models for cell differentiation and
generation of polarity in diffusion-governed morphogenetic fields,
Bull.. Math. Biol. (to appear).
os J. Cooke, The emergence and regulation of spatial organization
in early animal development, Ann; Rev. Biophysics and Bio-

engineering 4 (1975), 185-217,

s N. Dunford and J. T. Schwartz, Linear Operators, Parts I and II,

Interscience, New York, 1957 and 1963,

ol -




N m‘“':s L P

10.

1.

12,

P. C. Fife, Pattern formation in reacting and diffusing systems,

J. Chem. Phys. 64 (1976), 554-564,

P. C. Fife, Stationary patterns for reaction-diffusion equations in:
Papers on Nonlinear Diffusion, Proceedings of NSF-CBMS Regional
Conference on Nonlinear Diffusion, Research Notes in Mathematics,
Pitman, London, to appear.

A. Gierer and H. Meinhardt, A theory of biological pattern forma-
tion, Kybernetik 12 (1972), 30-39.

A. Gierer and H. Meinhardt, Biological pattern formation involving
lateral inhibition, Lectures on Mathematics in the Life Sciences,
Vol. 7, American Math. Soc. (1974), 163-183,

M. Herschkowitz-Kaufman and G. Nicolis, Localized spatial
structures and nonlinear chemical waves in dissipative systems,

J. Chem. Phys. 56 (1972), 1890-1895.

H. Meinhardt, The formation of morphogenetic gradients and fields,
Ber. Deutsch. Bot. Ges. 87 (1974), 101-108.

H. Meinhardt and A. Gierer, Applications of a theory of biological
pattern formation based on lateral inhibition, J. Cedl. Sci. 15
(1974), 321-346,

D. H. Sattinger, On the stability of waves of nonlinear parabolic
systems, Advances in Math (to appear).

D. H. Sattinger, Weighted norms for the stability of travelling

waves, preprint,
L4

=17




\

ECURITY LLAIUFICATION OF YNC{ PAG! (When lNate Fnlered)

£ REPORT DOCUMENTATION PAGE

n-;l_ro—:nuuuﬂ; r-' o ...nn.u..u.r.;uwuqo l;—'g,n,’.,,u_ul_&w NUMDER
1724_///‘”\\ SRAL724 ¢4 ik oricnl i

READ INSTRUCTIONS
NEFORE COMPILETING | ORM

\ACTIVATOR INHIBITOR SYSTEMS,

Mﬁmoo COVLRED

TIT and Subdtitle)
je-TaEhAd ’ﬂ/ummary,ﬂcpert - no spe%i,c

DE N ATTERN _EORMATION BY
gt =R £ A reporting pc‘rlod

/ 6. PENFORMING ORG. REPORT NUMBER

.. CONTRACT OR GRANT NUMBER(e)

7. AUYHOR(-OA)» - B / s =

L DAAG29 -75-c-6624//

Paul C. /Fife | ' o ,
/Fw (  MF=MPS-74-06835fE0T /

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::’;22“&‘:0}‘#’(&:}srTT.NPU‘Lo(;EEFEST' TASK
Mathematics Research Center, University of
610 Walnut Street Wisconsin #1 - Applied Analysis
Madison, Wisconsin 53706 2
1. CONTROLLING OFFICE NAME AND ADDRESS __ / P R BRSO \t;,_gmm___‘_.
a, (T Feb ARSI 77 |
See Item 18 below // / 13. NUMBER OF PAGES
i 17
T MONITORING NGENCY NAME & ADDRESS(I( dillerent from Conlmlunl Office) | 15. SECURITY CLASS. (of thie report)
) .
UNCLASSIFIED
T5e. DECLASSIFICATION/OOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, 11 dillerent from Report)

‘l} SUPPLEMENTARY NOTES p
g rmy Research Office . National Science Foundation

P.O. Box l22I1 Washington, D. C. 20550
Research Triangle Park,
North Carolina 27709

19. KEY WORDS (Continue on reveree eide Il necessary and Identily by block number)

Pattern formation, reaction-diffusion equations, parabolic systems.
stability of parabolic systems

20. ABSTRACT (Continue an reverse eside Il necessary and Identily by block number)
‘The formation of spatially patterned structures in biological organisms has been

modelled in recent years by various mechanisms, including pairs of reaction-dif-
fusion equations  u; = D’iV + f(u,v) ,

vy =D, Vz’v + g(u,v).

Their analysis has been by computer simulation. In some cases, u can be inter-
preted as an activator and v an inhibitor. The following problem is treated:

iven a “pattern™ u = o(x) v =
DD ,"on'3s 1473  eoition oF 1'nov 68 s oBsoLETE UNCLASSIFIED e B »)2/»7)

SPCURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)




stationary solution (stability is used in various senses in the paper),
This inverse problem is shown to have solutions for reasonable ¢ and .
The solutions constructed are of activator-inhibitor type with D‘2 > D1 .

e T ———




